Search results

Search for "bimodal imaging" in Full Text gives 11 result(s) in Beilstein Journal of Nanotechnology.

Engineered superparamagnetic iron oxide nanoparticles (SPIONs) for dual-modality imaging of intracranial glioblastoma via EGFRvIII targeting

  • Xianping Liu,
  • Chengjuan Du,
  • Haichun Li,
  • Ting Jiang,
  • Zimiao Luo,
  • Zhiqing Pang,
  • Daoying Geng and
  • Jun Zhang

Beilstein J. Nanotechnol. 2019, 10, 1860–1872, doi:10.3762/bjnano.10.181

Graphical Abstract
  • bimodal imaging capability, this novel and versatile multimodal nanoprobe could bring a new perspective for elucidating intracranial glioblastoma preoperative diagnosis and the accuracy of tumor resection. Keywords: epidermal growth factor receptor variant III (EGFRvIII); glioblastoma; magnetic resonance
  • through the blood–tumor barrier. Second, bimodal imaging combining magnetic resonance imaging and optical imaging provides a more accurate means for accurate diagnosis of glioblastoma. Third, the nanoprobe has good targeting to overexpressed EGFRvIII in glioblastoma and thus establishes a foundation for
PDF
Album
Full Research Paper
Published 11 Sep 2019

Generalized Hertz model for bimodal nanomechanical mapping

  • Aleksander Labuda,
  • Marta Kocuń,
  • Waiman Meinhold,
  • Deron Walters and
  • Roger Proksch

Beilstein J. Nanotechnol. 2016, 7, 970–982, doi:10.3762/bjnano.7.89

Graphical Abstract
  • have been verified experimentally for a paraboloidal indenter [39]. The system of two equations (Equation 8 and Equation 11) can be solved for two unknowns, namely and This operation is central to bimodal imaging, as it separates the changes in modulus from changes in indentation depth. This
  • bimodal imaging noted in the past [52]. Power-law tip The derivation so far revolved about a paraboloidal indenter. Applying the same approach used in Equations 6–13 to the generalized stiffness profile of Equation 5 result in the generalized indentation and modulus equations and where β is a scaling
  • explains the high sensitivity and spatial resolution of bimodal imaging. The binomial approximation of the stiffness weight function was shown to introduce negligible error (<1%), yet it can be used to derive bimodal AFM theory without invoking the use of fractional calculus. The experimental in situ
PDF
Album
Full Research Paper
Published 05 Jul 2016

High-bandwidth multimode self-sensing in bimodal atomic force microscopy

  • Michael G. Ruppert and
  • S. O. Reza Moheimani

Beilstein J. Nanotechnol. 2016, 7, 284–295, doi:10.3762/bjnano.7.26

Graphical Abstract
  • elimination of the piezoelectric base actuator and the OBD sensor from the cantilever instrumentation setup, avoiding tedious laser alignment and distorted frequency responses. In this contribution, we demonstrate that the self-sensing method can be extended to MF-AFM techniques such as bimodal imaging by
  • between material properties [37]. The experimental results are presented in Figure 11; a plane level algorithm has been applied to the topography images. The first row represents a bimodal experiment with the OBD sensor and the second row shows bimodal imaging of the same area with the charge sensor. For
PDF
Album
Full Research Paper
Published 24 Feb 2016

Silica micro/nanospheres for theranostics: from bimodal MRI and fluorescent imaging probes to cancer therapy

  • Shanka Walia and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2015, 6, 546–558, doi:10.3762/bjnano.6.57

Graphical Abstract
  • sites in vivo. In this sense, bimodal imaging probes that simultaneously enable magnetic resonance imaging and fluorescence imaging have gained tremendous attention because disease sites can be characterized quick and precisely through synergistic multimodal imaging. But such hybrid nanocomposite
  • will cover a full description of MRI-active and fluorescent multifunctional silica micro/nanospheres including the design of the probe, different characterization methods and their application in imaging and treatment in cancer. Keywords: bimodal imaging; fluorescence imaging; magnetic nanoparticles
  • NPs can be maximized. In our earlier review, we have compiled the literature reports on the biological studies of the hybrid nanocomposite materials, exclusively composed of luminescent quantum dots (QDs) and magnetically active iron oxide as bimodal imaging agents [2]. In this sense, nanostructured
PDF
Album
Review
Published 24 Feb 2015

High-frequency multimodal atomic force microscopy

  • Adrian P. Nievergelt,
  • Jonathan D. Adams,
  • Pascal D. Odermatt and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2014, 5, 2459–2467, doi:10.3762/bjnano.5.255

Graphical Abstract
  • our system for noise performance will decrease the baseline noise value further [35]. Dissipation imaging Bimodal imaging The capability for clean, high-frequency cantilever excitation, and low-noise, high-frequency deflection readout provide a powerful platform for extending multifrequency techniques
  • deflection readout, we have shown bimodal imaging of a polymer blend in both air and liquid, with amplitudes of the second mode well below a nanometre at previously inaccessible cantilever resonance frequencies. We furthermore demonstrated gentle, low-dissipation imaging of F-actin in drive amplitude
PDF
Album
Full Research Paper
Published 22 Dec 2014

Multi-frequency tapping-mode atomic force microscopy beyond three eigenmodes in ambient air

  • Santiago D. Solares,
  • Sangmin An and
  • Christian J. Long

Beilstein J. Nanotechnol. 2014, 5, 1637–1648, doi:10.3762/bjnano.5.175

Graphical Abstract
  • bimodal imaging, which was related to the energy content in each eigenmode [20][21][22], or may be the result of nonlinear interactions between the eigenmodes, given the complexity of the multimodal tip–sample impact. Optimization of the tip–sample impact Despite the stability with which imaging can be
PDF
Album
Full Research Paper
Published 25 Sep 2014

Trade-offs in sensitivity and sampling depth in bimodal atomic force microscopy and comparison to the trimodal case

  • Babak Eslami,
  • Daniel Ebeling and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2014, 5, 1144–1151, doi:10.3762/bjnano.5.125

Graphical Abstract
  • , which is equipped with bimodal imaging modes. We used a Bruker (Santa Barbara, CA, USA) MPP-33120 cantilever with first two resonance frequencies at 45.99 and 284.39 kHz, respectively, fundamental force constant of 7.3 N/m and fundamental quality factor of 236. The amplitude of the first eigenmode was
PDF
Album
Full Research Paper
Published 24 Jul 2014

Challenges and complexities of multifrequency atomic force microscopy in liquid environments

  • Santiago D. Solares

Beilstein J. Nanotechnol. 2014, 5, 298–307, doi:10.3762/bjnano.5.33

Graphical Abstract
  • natural frequency (see discussion in the text). (a) Standard linear solid model; (b) illustration of tip–sample impact force trajectory and surface recovery for a bimodal imaging case. Acknowledgements The author gratefully acknowledges support from the U.S. Department of Energy, through award
PDF
Album
Full Research Paper
Published 14 Mar 2014

Unlocking higher harmonics in atomic force microscopy with gentle interactions

  • Sergio Santos,
  • Victor Barcons,
  • Josep Font and
  • Albert Verdaguer

Beilstein J. Nanotechnol. 2014, 5, 268–277, doi:10.3762/bjnano.5.29

Graphical Abstract
  • metals such as gold, silver or copper [40]. Higher harmonic phase shifts also provide the means to decouple the true topography from an apparent topography, which is induced by compositional variations. Furthermore this outcome should still be valid in standard bimodal imaging. Overall, the proposed
PDF
Album
Full Research Paper
Published 11 Mar 2014

Multiple regimes of operation in bimodal AFM: understanding the energy of cantilever eigenmodes

  • Daniel Kiracofe,
  • Arvind Raman and
  • Dalia Yablon

Beilstein J. Nanotechnol. 2013, 4, 385–393, doi:10.3762/bjnano.4.45

Graphical Abstract
  • for the choice of higher eigenmode (e.g., “1st + 2nd” eigenmodes versus “1st + 4th”). The objective was to determine if the two scans showed the same type of contrast between the components, and to determine if one scan showed better contrast or higher resolution. Typical results of bimodal imaging
  • , on different locations on the sample, and on different samples. Similar results to the “1st + 4th” higher order eigenmode amplitude contrast reversal and lowering of first order eigenmode phase were also observed in “1st + 3rd” bimodal imaging. We chose to focus on “1st + 4th” imaging instead of “1st
  • eigenmode phase (not shown). Discussion From a practical point of view, it is not immediately obvious if bimodal imaging using the higher states is advantageous or not. On the one hand, for certain combinations of parameters/materials, the material contrast (i.e., percent change in amplitude for a given
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2013

Repulsive bimodal atomic force microscopy on polymers

  • Alexander M. Gigler,
  • Christian Dietz,
  • Maximilian Baumann,
  • Nicolás F. Martinez,
  • Ricardo García and
  • Robert W. Stark

Beilstein J. Nanotechnol. 2012, 3, 456–463, doi:10.3762/bjnano.3.52

Graphical Abstract
  • regime of dynamic force microscopy. We thus investigated bimodal imaging on a polystyrene-block-polybutadiene diblock copolymer surface and on polystyrene. The attractive operation regime was only stable when the amplitude of the second eigenmode was kept small compared to the amplitude of the
  • magnitude smaller than the first two fundamental eigenmodes. Thus, repulsive bimodal imaging of polymer surfaces yields a good signal quality for amplitude ratios smaller than A01/A02 = 10:1 without affecting the topography feedback. Keywords: bimodal AFM imaging; diblock copolymer; polybutadiene
  • experiments. Thus, a stable repulsive regime could be achieved while excessive tip–sample forces were avoided. Bimodal imaging The imaging of a thin film of a polystyrene-block-polybutadiene (SB) diblock copolymer was conducted on a Dimension 3100 AFM with a Nanoscope IV controller (Veeco Metrology Inc
PDF
Album
Full Research Paper
Published 20 Jun 2012
Other Beilstein-Institut Open Science Activities